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01' ' t  equations with a set of conservative and a set of non-conserva- 

Scheifele's DS formulation of t i ve  perturbing potent ia ls  are considered. 

these equations has dependent variables similar to  Delsunay's orbital 

elements wi th  the t rue  anomaly as the independent variable. Efficiency 

curves of computing cost V.S.  accuracy are constructed f o r  ?dams integra- 

t o r s  of orders 2 through 15 with several  correcting algorithms and for a 

Runga-Kutta integrator. Considering s t a b i l i t y  regions, choices are made 

for the optimally e f f i c i e n t  integration modes for the DS elements. Inte-  

Srating i n  these modes reduces computing costs f o r  a specified accuracy. 

JPL Technical Memorandum 33-710 v i  i 



1.0 WTROWCTION, CONCMISIONS 

1.1 Introduction, Summary 

This report  is one study which is  par t  of a larger  NASA e f f o r t  

by many researchers t o  increase the  accuracy and decrease the computing 

costs of generating orbi ts .  

mission design, operations, s c i e n t i f i c  applications and other processes 

where o rb i t  generation is an in tegra l  part. 

The results w i l l  improve efficiency of 

By a "correcting algorithm" is meant a par t icular  predict-correct 

process such as P E E  which is a prediction followed by a f'unction 

(d i f f e ren t i a l  equation) evaluation, a correction, and another evaluation. 

An "integration mode" consists of a n  algorithm (or variable algorithm 

method) and an  order (or variable order) method. 

An " orbi t  generatcr" consists of the formulation of the equations 

of motion (Cowell, VOP, E, ...), an integrator ,  and a n  integration 

mode. 

An "efficiency Curve" i s  a p lo t  of e r ror  V.S. cost  fo r  one problem 

and one o rb i t  generator. 

Since the cost  of a par t icular  stepsize depends on the algorithm, 

the cost  of function evaluations on the formulation, and the cost  of CPU 

time on the computer Installation, there  is no universally acceptable 

cost  scale.  All three scales  a re  given i n  our figures.  

Imagine placing a set  of efficiency curves, each with a different  

JPL Technical Memorandum 33-710 1 



algorithm (e.g. Figures 9 - 12 for J ), in order of increasing influence 2 

of' the corrector to form a three dimensional graph of h V.S. error V . S .  

algorithm. Each figure is a cross section of constant "algorithm". 

ERROR, m 

k 

rad 
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Definition: 

by choosing the  low points i n  the above schematic by choosing 

tha t  order giving the smallest e r ror  fo r  each algorithm and step- 

s ize .  

The "efficiency envelope" is the surface constructed 

Choosing the low points i n  each crcss section, w e  get a contour curve 

of the efficiency envelope. This process optimizes over the variable 

"order" leaving the other parameters of algorithm, integrator,  and formulation. 

Superimposing the contour curves, as i n  Figure 16, we project the eff ic iency 

envelope onto the h-error plane. 

lunar parturbations . 
Figure 17 does the same for the J2 and 

We interpret optimizing over the parameter"algorith 'as specifying 

an h-algorithm plane perpendicular to  the e r ror  axis ( a t  

schematic) and searching the lower-right ( large h)  side of the  in te r -  

section of t h i s  plane with the efficiency envelope. 

algorithm and order which allows the la rges t  h and the smallest computing 

t i m e ,  subject t o  the z r ror  c r i t e r i a .  The variable correcting and p a r t i a l  

correcting algorithms (such as used i n  GSFC program GTDS) essent ia l ly  

ref ine the grid i n  the algorithm dimension thus allowing a choice of a 

more optimal integration mode. 

m in the 

We thus choose the 

T h i s  report accomplishes t h i s  optimization for  t h e  DS formul.ation [ls] 
a 

and Adams fixed s tep integrators.  

a complete idea of s t a b i l i t y  and 'bccuracy tha t  i s  possibie. 

s tudy cll] the Cowell formulation is  optimized over several fixed s tep  

integrators.  

t o  others. Two re la t ive ly  new integrators t h a t  should be fur ther  studied 

due t o  the i r  increased accuracy and s t a b i l i t y  a re  the back-correcting [2] 

A range of a factor  of 10' i n  h gives 

In one 

Another study [l] shows the DS formulation compares favorably 
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and the cyclic is, 211 i n  particular the optimized cycl ic  (141. 

The overall  effort  is t o  search for  the most e f f i c i en t  orb i t  genertitor 

by considering the parameters 'Yorwilation" and 'Integrator: thus adding two 

dimensions t o  the geometry f o r  a t o t a l  of 5. 

as 

envelope surface by considering relationships between formulation and 

Analytical s tadies  such 

7 and p7 w i l l  help f i l l  i n  the now four dimensional efficiency - 

integrator. So w i l l  numerical studies that consider d i f fe ren t  formulations 

Statement of the Overall Effort: 
Minimize cost  as a ftmction of formulation, integrator,  integration 
mode, e r ro r  

Subject t o  the Constraint: e r ror  5 k. 

The approach presently taken for tais enormous, nonlinear, constrained 

optimization problem is  essent ia l ly  a numerical mapping routine, i.e., 

choose an orbi t ,  formulation, integrator,  integration mode, stepsize,  

and then integrate t o  get a point on the surface. This approach is qui te  

c o s t 4  due t o  the many parameter combinations tha t  must t: studied. Using 

emperical experience and analyt ical  studies w i l l  reduce t h s  number of 

parameter cambinations it is necessary t o  consider. We also recommend 

studying the f eas ib i l i t y  of using a more e f f i c i en t  numerical optimization 

proctdure [14] t o  find the  overall  most e f f i c i en t  orb i t  generator fo r  

each problem. Once done the savings i n  applying these generators w i l l  

be considerable. 

JPL Technichl Memorandum 33-710 



1.2 Conclusions 

1. 

2. 

3. 

4. 

I n  the DS formulation el ( t rue anom-y) and q, (time element) are 

the only variables termed "fast'' and a4 is 10 faster than al. 

With J the variation i n  cy and cy increases t o  the  order c" el. 

5 

2 5 6 

2 
With J2 and lunar perturbations cy , QI , and e7 become 10 t o  

10 faster than el, the i r  fastest variation is near apogee, Adams 

efficiency decreases by about 10 (R-K by 10 ) and s t ab i l i t y  problems 

enter. 

but this should be done care-. 

The dynamic and numerical s t ab i l i t y  of the OB formulation depends 

on that of the  DS and on the  second partials of the DS-OB generating 

h n c  ti on . 
The order 7 R-K integrator has the slope of an order 10 method, while 

Adams generally act l i k e  they are lower order than they ideal ly  are. 

Despite t h i s ,  Adams fixed step is overal l  more e f f i c i en t  than R-K 

fixed o r  variable step. (At higher accuracies with lunar perturbations 

R-K variable step is s l igh t ly  better.) For best  efficiency, Adams 

variable s tep  should probably be used near perturbations other than 

those due t o  the central  body. 

5 6  
3 

3 7 

For s t ab i l i t y ,  s tepsize control is advisable i n  t h i s  vicini ty ,  

The remaining conclusions are concerned with Adams integrators.  

Numerically DS is very s table  with J2; order 15 is  s table  a t  only 7 

steps per revolution. With the moon order 8 remains stable at t h i s  

large h but higher orders have smaller s t a b i l i t y  regions. The s t ab i l i t y  

5 JPL Technical Memorandum 33-710 



region becomes smaller wi th  more corrections, a lso.  

With J2, higher orders and more correcting generally yield steeper 

curves; hasever, ordevs greater than 12 do not s ign i f icant ly  improve 

efficiency. 

2.0 depending only on algorithm. 

curves fo r  different  orders generally s t i c k  t o  a t i gh t  bundle with 

slope 1.5 t o  2.5 depending only on algorithm. This behavior is not 

typical  truncation or  roundoff. The explanatiorr i s  hypothesized t o  

l i e  i n  the truncation e r ror  coupling of formulation t o  integrator.  

5 .  

For small h a l l  o rd . f s  are  para l le l  wi th  slope 1.0 or  

With J2 and moon at all h, the 

2 6. With J2, PE(CE) order l2 or  15  i s  most e f f i c i en t  for er rors  5 1 m. 

The most e f f i c i en t  fo r  larger  e r rors  is PEC order 12 or 15. 

J2 and moon, PE(CE) 

5 100 m. 

With 

2 order 8 is most e f f i c i en t  and s tab le  f o r  e r rors  

Fcr larger  errors  PEP order 6 is  best. 

6 JPL Technical Memorandum 33-71.0 



2.0 P R O U  FOMJLATION 

2.1 Problem Sets 

The greatest use of this formulation is l i ke ly  to  be on highly 

eccentric orbits. The orbits considered have i n i t i a l  conditions: 

5 0 '  6 km, e = .%, i = 18 40 , p = .58 x 10 a = 1.5 x 10 secs = 6.P days, 

is the ' '5, 6, 7 is the Cartesian posit ion i n  km where 5, 2, 3 
Cartesian velocity i n  km/sec, X4 is t h e  physical time, X8 i s  the t o t a l  

energy, is the DS vector described l a t e r ,  and a, e, i, and 1, ..., 8 
p have :he usual meanings. 

We consider two sets of perturbations: (1) the  full J2, conservative, 
(l - Pr) where 6 = 2.627622224 x 10 10 . term of the Earth's potent ia l=-  

(2) The above J term plus the non-conservative (time varying) force due 2 

t o  the f i c t i t i o u s  moon moving i n  a c i rcu lar  orbit  at a distance 3.84klO km 

from the Earth wi th  an angular velocity 2.66 x 

r 3 7  

5 

radians/sec 

(p = 27.4 days) and gravi ta t ional  constant times mass = 4902.66. This 

f i c t i t i ous  moon w i l l  have the same ef fec t  on the integrators as the  real 

moon and w i l l  avoid ephemeris d i f f i cu l t i e s  i n  t h i s  t es t ing  phase of the 

work. 

A sketch of the geometry during the first orb i t  is shown i n  Figure 1. 

JPL Technical Memorandum 33-710 7 



Figure 2 graphs the! Garth-satell i te distance, c ,  end the physicel the, 

It,, V.S. the t rue  an-, T, for J only. Figure 3 shows the for 2 
6 

J2 and the moon. 

j u s t  before three revolutions and jus t  after apogee. 

'phe final time specified 011 input is tf = 1.491 x 10 secs, 

With J2 only 
5 = 16.895 radians, r = 2.756 x 10 hnr and w i t h  J2 and the 880011 Tf = 16.899 Tf 

5 radians, r = 2.736 x 10 loa. 

2.2 Formulations 

I n  integrating e l l i p t i c a l  orbits much overhead and i n t e v o l a t i o n  

error can result from using a variable s tep  algoritb t o  reduce local 

truncation errors near pericenter. 

use automatic t i m e  s t ep  regulation [lo> [16]. 

variable from t t o  s by using 

(2.2-1) dt/& = c r  

Taking equal s teps  of size 

steps,  A t  - c r  A s ,  when r is small. Thus, t h e  choice of n a f fec ts  the  

efficiency of the  integration - 

One means of avoiding this is t o  

Transform the independent 

n 

bs w i l l  automatically y ie ld  smaller time 
n 

An interest ing analysis by Velez r171 shows the effect on the  dynamic 
c -  

s t a b i l i t y  of the transformed equations of motion and, si.ice +.hh  is 

coupled to  the numerical s t a b i l i t y  of the integrator,  the s t a b i l i t y  of 

t h e  whole orb i t  generation process i s  a l so  affected by the  choice of n. 

He finds n = 1.5 best fo r  the time regularized C o w e l l  fo rmla t ion  with 

a fixed s t e p  Adams inteerator.  

n yield l e s s  dynamic s t a b i l i t y  and larger n y i e l d  l e s s  numerical s t a b i l i t y .  

The choice is d i f f i c u l t  since small 

Another problem with time regularization is that t o  get the posit ion 

8 JPL Technical Memorandum 33-710 



at a final physical time the time e2uation (2.2-1) must be integrated 

giving timing errors. Multiplying this error by the velocity we get 

an implicit error in the position which amst be added to the explicit 

position error. Several researchers, including Ba\rmgarte, Stiefel [:j, 
and Wcozy, have impraved timing accuracy and stability by adding control 

tews or energy surface considerations to the equations of motion. 

In integrating orbits that are basically two body, advantage can 

be taken of the two body analytic solution by transforming the dependent 

variables to the two body elements. 

methods exactly solve the two body portion of the motlon [16] and allow 

larger integration steps to be taken. 

since the elements change fastest near pericenter. 

These "variation of parameter" 

Variable stepsize is still advisable 

For this reason, authors have recently combined the above independent 

and dependent variable transformations in the KS, DS and other formulations 

r15]. These formulations exactly solve the two b a v  portion and have 

automatic stepsize and energy control by including time and energy elements 

in the canonical formulation, as opposed to adding the time equation and 

control term onto the Cowell forwilrtion. 

these formulations is that some of the dependent variables are slow and 

some are fast. Traditionally, "slow" means the variable is  constant in 

unperturbed motion. 

the fast variables. 

are being formulated which smooth aut these fast variations. 

- 

The remaining problem w i t h  

The integration step must be smaller to account for 

Analytical [l5] and numerical [7] averaging techniques 

Two Scheifele [15 3 DS formulations are considered in this report. 

JPL Technical Memorandum 33-710 9 



I n  the  first, w e  begin w i t h  the canonical equations o f  motion f o r  the 

Cartesian phase space dependent variables w i t h  time as the independent 

variable. Phase space i, extended by adding the energy-time conjugate 

dependent variables. 

variable which is l i n e a r  in the  true anoplaly. 

are made to the  spherical phase space then t o  elements similar t o  

Delaw's. 

fast (the true anomaly). The fast variable is very fast and the equations 

of motion have periodic terms multiplied by the fast variable f o r  nm- 

conservative forces (mixed secular terms). 

reducing problems are eliminated by further transforming the depend .t 

and independent variables. 

This allows transformation t o  an independent 

Canonical transformations 

O f  these dependent variables, seven are slow and one is 

These s t a b i l i t y  and accuracy 

The DS independent variable is thus the  true anomaly pias a constant 

and the dependent variables are: 

wl = I= true anomaly fast 

slow w2 = g = argument of pericenter 

w,, = L = time element 

d = h = longitude of ascending node slow 

fast 

0 = a  slow 5 
slaw a6 

cv = H = thi rd component of angular nmentum slow 7 

3 

= G = angular momentum 

w8 = L = - energy slow 

The angular momentum element ( in tegra l  i n  Kepler's second law) is 

10 JPL Technical Memorandum 33-710 



used both as a dependent variable and i n  transforming the independent 

variable s ince f i o m  (2.2-1) r2 2 = k.  The relations between the 

Cartesian extended phase space vector (2.1) and the DS elements are: 

G = Ilposition x velocity11 

3 H = G  

2 L = X8' - 3  veloc i ty  + - v 

where: 

(Gl, G2, C ) = posit ion x veloc i ty  3 

V = perturbing potential  

IL = gravitational const. x (M + m) 

t = x4 

JPL Technical Memorandum 33-710 11 



da Details of transforming the d i f f e ren t i a l  equations t o  get 

i n  [16]. This is integrated to  get an u value w h i c h  is transformed back 

to x. 

are given 

Figures 4 and 5 graph these elements V.S. t rue  anomaly f o r  the first 

revolution for J2 only, and Figures 6 and 7 for J2 and the moon. 

for u and e4, they are periodic and the range of var ia t ion of q+ is by 

far the greatest. 

as soon as J2 is added t h e i r  var ia t ion is of the  order of el. 

based on t h e i r  var ia t ion remaining small must be modified. 

also Vary but  quite slowly. u remains constant with J2 and e8 with a l l  

conservative perturbztions, as expected. 

Except 

1 
Even though o and "6 are constant without perturbations, 5 

Any analysis 

@2 and u3 

7 

2 When the  moon is added, the  var ia t ion of u , e6, and u is 10 t o  5 7 
lo3 greater than tha t  of o but it is sti l l  less than w4* The remaining 

elements vary slowly. The greatest  var ia t ion is near T p 4.4 which is 
1 

a t  apogee ( the point nearest the moon's o rb i t  (Figure 3) goJ the point 

nearest the moon (Figure 1)). 

12 JPL Technical Memorandum 33-710 



Since the DS formulation was geared toward the cent ra l  body being 

the  main poten t ia l  source, it is not surprising tha t  the moon causes 

such gross "misbehavior" which can came s t a b i l i t y  and truncation pro- 

blems. 

perturbations other than the central body are present. 

This points t o  the necessity of using s teps ize  control when 

I n  the second formulation considered, Scheifele has tried t o  slow 

the fast variables by analytically averaging the high frequency terms 

due t o  J out of the equations by applying the yon Z e i p e l  algorithm. 

Ideally, this w i l l  allow larger stepsizes near the cent ra l  body which 

will more than compensate for the increased computing necessary t o  make 

2 

the  ex t ra  transformation. 

mation is made from t~ t o  o', the  'bblateness elements" 

meSate"e1ements are almost canonical since terms of order $ have been 

ignored i n  the transformation. 

Using t h e  generating function S1, a transfor- 

OB. Thesearinter- 

If q = G - * @ + A  and 
2@L 

1 eb 1 eb 
P9 

s i n  + 5 - sin($ + 2g) (2.2-1) s1 = 

then the re la t ion  between w and 0' is: 

, 0 . 0 )  - 5) = d 4 @(cy) . =l 
"8 ?cyl aw4 

¶ - -  1% asl 
(2.2-2) a ' (&)  = cy + (\% , ..., - 

13 JPL Technical Memorandum 33-710 



de 
ds In transforming the d i f f e ren t i a l  equations, we first compute - as for 

the DS elements. 

Fram (2.2-2), we compute the Jacobian 

The dynamic and numerical s t a b i l i t y  of the OB elements thus depends on 

that of the DS elements and on the second partials of the generating 

f h c t i o n  S1. Integrating yields  a value of e*. To f ind  o! from cy*, 

w e  have a(@*) = 6' - &(CY) which is a nonlinear transformation and must 

da' 

be i te ra ted ,  thus increasing t h e  computing time. This  transform recovers 

t h e  J2 high frequency terms. 

the two body portion and yields  the Cartesian state. These back trans- 

forms must be done at each s tep  i n  order t o  evaluate the forces (Section 

The transform from a t o  X recovers 

3.2) 

3.1 I n t e r n t o r s  

The orbits are generated with two basic types of integrators .  The 

first is the  seventh order Runga-Kutta method W(8) of Fehlberg [GI. 

This is the highest order R-K method i n  use today. An estimate t o  the 



l oca l  truncation e r ror  is obtained by evaluating its leading term. 

Thirteen f b c t i o n  evaluations per s t ep  are required. Following these 

evaluations the loca l  truncation error estimate is compared t o  a user 

supplied tolerance, TOL. 

s i z e  is chosen and 12 of the evaluations are repeated with th i s  new 

stepsize.  The stepsize is reduced u n t i l  the estimate is less than TOL. 

Then t h i s  value for  the solution is accepted at th i s  s tep and we proceed 

t o  the next step with a specified stepsize.  An option is available t o  

override the stepsize control and integrate  with a fixed stepsize. 

If the estimate exceeds TOL, a smaller step- 

The second integrator used is the Adams, nonsummed, ordinate form 

[8]. In th i s  study, we used fixed stepsizes;  the smallest being 

of the largest which is a greater range than comparable studies. 

This was done t o  get a complete idea of the  range of s t a b i l i t y  and 

accuracy that is possible with the DS elements. 

from 2 t o  15. 

commonly used i n  o rb i t  generation. The fixed correcting 

algorithms used are PEP PEC, PEE, and PE(CE) which require one t o  

three function evaluations per step. 

i n  25D, using a CDC 3350. 

The orders used range 

Order 15 is  three o r  four orders higher than 

2 

The coefficients were computed 

The program will accept cycl ic  integrators [5], [LS], r211 - . .  and a 

thorough study using these should be done. The optimized ones r141 are  

especially more stable and accurate than the t rad i t iona l  muitistep 

integrators and re la t ive ly  improve with high eccent r ic i t ies .  With 

s tepsize control they w i l l  probably require fewer s tepsize changes. 

b -  

JPL Technical Memorandum 33-710 15  



3.2 P r w r m  Description 

Two programs are used. The first is f o r  the DS elements. 

MAIIp: I n i t i a l i z e s  Cartesian vector, transforms t o  i n i t i a l  DS vector, 

calls either RK or  INTEG, then transforms fined DS t o  Cartesian 

coordinates. 

DSTOCO, C(rr0DS: Transformations between DS and Cartesian vectors 

(Section 2.2). 

- FORCES: 

E L D q :  

Computes potent ia ls  and forces i n  Cartesian coordinates. 

Converts dotent ia ls  and forces from Cartesian coordinates t o  

be used i n  the DS differential. equations for  G. da! 

~ ~ 7 8 :  Rungs-Kutta integration from one s tep  t o  the  next (Section 3.1). .- 

16 JPL Technical Memorandum 33-710 



- ma: Uses RK78 t o  compute s t a r t i n g  values for t r ad i t i ona l  or  cycl ic  

multistep, predictor-correcter integration (Section 3.1) step- 

ping along i n  t rue  anomaly (T) u n t i l  X4 > final time ( t f ) *  Now 

consider X4 t o  be a f h c t i o n  of t r u e  anomaly X4 (T). We wish 

t o  f ind  that T value, Tf, where X4(Tf) - tf = 0. Using Newton's 

method: 
X4(Ti) - tf 

(3*2-1) T i + l  - T i  = - 

where the denaminator is approximated by x 4 (T i 1 - ~ 4 ( ~ i , 1 )  

Ti - Ti-l 

then converges t o  Tf. 

- Ti 5 MTOL which is specified on input. Muting the 

I t e r a t ion  is stopped when Ti+l 

Ti+l 

DS vector at  Ti+l CC: Tf will yield X4 cs tp and t h i s  final solut ion 

w i l l  automatically include any timing error (Section 2.2). 

- m: Controls RK"8 as it steps dong i n  t rue  anomaly (Section 3.1) u n t i l  

X4 > tf then proceeds as i n  INTEG. 
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M: Initializes Cartesian vector, transforms to initial DS end 03 

vectors, calls either RK or INTEG, then transforms final OB t o  

DS to  Cartesian coordinates. 

DSTOOB, OBTODS: Transformations between DS and OB vectors (Section 2.2). 

bfATlUX: Computes the Jacobian - air" (Section 2.2). 
- d z  

OBDW: Computes du' from G' -& 
de acu 

18 
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IElTEG and RK now integrate the OB vector. 

bugs :ire being worked out of the  OB version of the  program, so we 

have no numerical results yet  t o  report. 

program wi th  the Ruga-Kutta integrator  is due t o  C. Sc:~c!fele [15]. 

A t  t h i s  writing, several  

A preliminary version of t h i s  

4.0 EFFICIENCY 

The reference solutions were generated by converting the program 

t o  a CDC 3350 w i t h  25D and running it with the R-K variable s t ep  with 

TOL - DTTOL = 

allows an analysis of the e f fec ts  of the  transformations. We are con- 

fident the  reference solutions a re  accurate t o  1 6 D .  Figures 2 through 7 

graph the solution. 

(Section 3). Having both Cartesian and US solutions 

Comparison runs for the DS elements were made on a Xerox Sigma 7 

which has the  same word s t ructure  as tlie IBM 360 (16D), allowing compar- 

isons with runs on tha t  machine. A t o t a l  of 48 curves were generated 

(Figures 8 through 15 and Table 1) each wi th  approximately 6 stepsizes,  

ranging over a factor  of 10 , fo r  a to ta l  of 288 successful I U S .  3 
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TABLE 1 

SIJMMARY OF EFFICIENC; CURVES FOR THE DS FORKLATION 

~ ~~ 

Fig. Perturbations Integrator Algorithm Orders 
No. - 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

J2 only 

J2 and moon 

J2 only 

J2 and moon 

J2 only 

J2 anly 

J2 Only 

J2 and noon 

J and moon 

J and mom 
2 

2 

J2 o n 4  

J and moon 2 

RK 

RK 

A- 

Adams 

Adams 

Adams 

Adams 

Adams 

Adams 

Adam 

Adam 

Adams 

f ixed s tep  
variable s tep  
fixed s tep  
variable s tep  

PE 

PE 

PEC 

PECE 

P E ( C E ) ~  

PEC 

PECE 

PE ( CE l2 

all 

a l l  

7 

7 

6, ?.5 

6, 15  

2 - 15 

2 - 15 

2 - 15 

2 - 15 

2 - 15 

2 - 15 

envelope 

envelope 
~~ 

The f i rs t  ve r t i ca l  scale is the Ebclidean norm of the Cartesian 

?osition e r ro r  i n  meters. This includes the implicit  e r ror  due t o  the 

timing error. 

divided by the f i n a l  r value. A re la t ive  e r ro r  of 10 , f o r  example, 

means there are four s ignif icant  d ig i t s  of accuracy i n  t h e  satellites 

pos i t ion. 

The second scale  is the  re la t ive  e r ror  which is t he  e r ro r  
-4 
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The first horizontal scale is  thel'effective stepsize", h, i n  radians. 

h is normalized t o  be the ac tua l  stepsize fo r  the standard PECE (2 M c t i o n  

evaluations per s tep)  and is adjusted f o r  other correcting algorithms 

according t o  the number of function evaluations. 

comparison of computing times f o r  d i f fe ren t  algorithms. 

This enables a direct 

The formula is: 

(4 .O-l) 2(arc length 
h ( t o t a l  # fctn. e d u a t i o n s )  

which is twice the average distance between evaluations. The second 

and th i rd  scales are the tc ta l  number of evaluations and the  Sigma 7 

CPU seconds not including factors fo r  the amount of core wed o r  s w a p s .  

This w i l l  allow comparisons w i t h  other machines. 

Let  p = the order of t he  integrator and d depend on the integrator 

and on the  high derivatives of the  d i f f e ren t i a l  equations thus on the  

formulation used. 

ideally: 

(4.0-2) 

I n  the  log-log graphs i n  the truncation limited region, 

log (error) 5 p log h + log d . 
The curves should be straight l i nes  with slope = order. 

of formla t ion  and integrator w i l l  y ie ld  a s d l e r  d, thus yielding an 

overall efficiency improvement. 

grators [14, 18, 191 i n  addition t o  improving s tab i l i ty ,  and for considering 

the combined ef fec ts  of formulation and integrator [12, 173. 

A good combination 

This is one reason f o r  optimizing inte- 
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4.1 R u g a  - Kutta - 
I n  Figure 8, t he  points for h 2 .2 should be ignored since most of 

the f b c t i o n  evaluations are involved i n  the f inishing procedure (Section 

3.2) and do not accuretely represent efficiency. 

are generally l i nea r  with both fixed s t ep  slopes ,> 10 which is three 

orders higher than expected. 

so much so that the choice of 'POL is very cri t ical  t o  the propqgated 

error. 

Otberwise, the curves 

The variable step curves are even steeper, 

7 

IO8, possibly caused by a larger value of d (4.0-2). This accuracy 

degradation is not as great w i t h  Adams integrators.  

is simultaneously increased due t o  the additional computations. 

the two CPU scales. 

The moon's perturbation increases the error by a fac tor  of 10 t o  

The computing t i m e  

N o t i c e  

4.2 Adams, Conservative Perturbation 

Figures 9 - l2 shav qui te  a regular behavior and all modes r m c  

stable. Figure 12, PE(CE)2, curves exhibit what might be termed ideal 

behavior. 

(.3, 10 m) where all curves cross almost shal taneausly.  A t  smaller 

h, higher orders are amre e f f i c i en t ;  at  larger, they are less e f f i c i en t .  

The l ines  should cross due t o  the expected different slopes (4.C-2) but 

t h i s  does not explain why they all cross at nearly the same point. 

What we will call  a"pivot point"occurs at  (h, e r ro r )  e 
3 

A t  the largest h run, we are taking only about seven steps f o r  a 

whole revdut icn.  The s t a b i l i t y  is remarkable. A t  even larger h, the 
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higher orders w i l l  become unstable first. 

As h decreases, the e r r u  reaches a minimum then increases as 

roundoff takes over causing a"dip"near (h, e r ro r )  = (.5, 13.5 s ignif icant  

digits) w h i c h  is almost all w e  can expect Propl this 1 6 D  machine. The 

orders 2 and b truncation errors a r s  sti l l  too large for the total error 

t o  be seriously effected by roundoff. A t  even smaller h, these should 

also show a dip. 

Figures 9, 10, 11 resemble one another. They have w h a t  look l i k e  

truncation limited regions with the pivot p i n t  and dip region moving 

t o  the left  i n  h as the corrector influence increases i n  a def in i te  

trend. 

algorithm 

pivot h 

dip h .2 .1 .y < .06 

However, these d i p s  occur at less than gD, implying t h e i r  cause is not 

roundof f . 
As h decreases, a l l  orders become parallel with slope = 1 f o r  PE 

and slope = 2 fo r  PIX and PECB (Table 2). 

limited region since the slopes are equal and not a roundoff l imited 

region since errors  decrease wi th  h .  We hypothesize t h e  explanation for 

these phenomena lies i n  the truncation e r ror  coupling of the formulation 

t o  the  integrator. 

This is  not a truncation 
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4.3 Adams, Mon-Conservative Perturbation 

Figures 9, 13, 14, 15 w i t h  the  lunar perturbation are no+ as regular 

In  Figure 15, as w i t h  J2 only and the  higher orders do become unstable. 
2 the PE(CE) 

higher order methods being steeper as expected i n  a truncation region 

(4.0-2); however, the near equality of the slopes was not expected. 

A t  the smallest h run, truncation is  s t i l l  too large fo r  roundoff t o  give 

a dip. 

curves are nearly s t ra ight  l i nes  a t  small t o  medium h with 

There is a pivot near h = .OS; however, t o  the right there are 

convex and concave curves, so t h e  picture is not as c lear  as with J2 only. 

Orders 10, 12, and 15 became unstable and the higher orders have 

smaller s t a b i l i t y  regions. 

at h giving only 7 steps per revolution. 

It is surprising the  order 8 remained stable 

Figures 9, 13, 14 resemble one another. Orders 12 and 15 always 

became unstable after having a dip at  e r ror  values too large t o  be caused 

by roundoff. The point of i n s t a b i l i t y  (and the dip) moves t o  the l e f t  

w i t h  increasing corrections (as wi th  J only), so the s t a b i l i t y  region 

becomes smaller with i icreasing c o r r e c t i c s .  
2 

There appear t o  be no t m c t l o n  nor roundoff regions et a l l .  The 

curve8 just twist around each other In  a tight bundle with any order 4 - 8 

being as e f f i c i en t  as another (2 is a l s o  close),  except the 12 and 15 

are more e f f i c i en t  at  the dip and l e s s  when they are unstable. 

bundle has slope approximately 1.6 for PE and 2.3 f o r  PM: and PECE which 

is  analogous Lo the smals h result for J2 only (Table 2) .  

The 
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TABLE2 

SLOPES OF EFFICIENCY CURVES 

L 

i 
f 

f Algorithm Stepsize Orders of Adams htethods i 
8 10 12 15 

1 A_ .- 
i Range 2 4 6 
c .- - _ _  ______ 

'2 

PE smal l  - 
medium - 
large - 

PEC smnll 2.0 
medium 2.0 
-@ 2.7 

PECE small  2.0 
medium 1.8 
large 2.8 

PE(CE) small 2.0 
medium 1.7 
large 2.8 

0 - - 
2 .o 
2 .o 
4.3 

2 .O 

4 .O 

4.0 
4.0 
4.1 

* 

1.0 - 
3.9 - 
* - 

2.0 2.0 
2.0 * 
5.0 6.6 

2.0 2.0 

4.8 6.0 
* * 

* -1.0 
6.3 * 
5.0 6.6 

- - - 
- - - 
2 .o 

7.5 

-1.0 

8.6 

* 

* 

- 1.0 

- 15.0 

2.0 1.9 * * 

- * 

8.0 12.0 

2.0 2.0 

8.0 17.0 

-1.0 -1.0 

8.0 12.0 

U * 

* * 

I 
i 

I 
I 

i 
j 
1 
! 

i 
i 

I 
! 

I 
I 
i 

PE all - 
PEC small 2.0 

~ d i u m  1.8 
large 2.4 

PEE small 1.9 
medium 1.9 
large 2.3 

PE(CE)~ small 1.9 
medium 2.3 
large 2.5 

J, and Moon 

- 
2.6 
2.2 
2.3 

2.6 
2.5 
2.4 

3 99 
4 .2 
2 01 

1.6 

2.6 * 
* 
2.8 
2.6 
1.8 

6.0 
5.0 
2.4 

- - 
2.6 - 2.7 
1.7 - 
2.7 - m 

1.8 - 2.7 
2.2 - 6.4 
1.9 - W 

6.7 - 7.5 
j .2 - 6.7 
2.0 - 

* 

W 

* Large curvature in this region - NO W 
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4.4 Efficiency Envelopes, C0mpar isons 

I n  the R - K curves (Figure 8), w e  see that with J2 only the fixed 

s t ep  algorithm is  more e f f ic ien t .  .This is  probably because the s tep-  

size control is not optimal. 

i en t  f o r  errors  5 10 meters, but l e s s  e f f i c i en t  f o r  larger acceptable 

errors .  These rescilts and Figures 2 and 3 show that  s tepsize control 

is not needed for J2 only, but the s tepsize at apogee is 1/10 that at 

perigee with the  moon indicating that s tepsize control is necessary i n  

t h i s  case. 

With the moon variable s t ep  is more e f f i c -  

Aligning the ve r t i ca l  and horizontal scales of the J2 only curves 

allows comparison of the most e f f i c i en t  orders f o r  each algorithm in 

Figure 16. 

sh i f ted  s l igh t ly  t o  the l e f t  of the PE graph due t o  the s l i g h t l y  greater 

CPU t i m e .  Algorithms with more corrections a re  generally steeper and 

there is an  algorithm pivot point near (h, e r ror )  = (0.18, 1 m).  

phenomenon resemble those of the different  orders of a s ing le  algorithm; 

more corrections and higher order both lead t o  steeper curves (Table 2). 

The s t a b i l i t y  intervals  a re  very large; not exceeded by our la rges t  h. 

Using orders greater than 12 generally does not s ign i f icant ly  

There is one curve for each algorikhm. The PEC graph was 

These 

improve efficiency. Orders 12 and 15 dominate Figure 16. 

The m o s t  e f f i c i en t  integration mode fo r  errors  < 1 m and h c .18 
2 is  PE(CE) 

order 12 or 15. 

machine. 

order 12 or 15. The most e f f ic ien t  fo r  larger  e r rors  is PEC 

The maximum achievable accuracy is  13.5 D on the 16 D 
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The most e f f i c i en t  orders for each algorithm w i t h  the lunar pertur- 

bation are sketched i n  Figure 17. 

lead to  steeper curves and there is a pivot near (h, e r ro r )  = (0.03, 100 m),  

but these phenomenon are not as clear as with J2 only. 

tend t o  c o n m e  the picture. 

expecially for orders 5 8. Orders 6, 12, and 15 dominate this  figure. 

More corrections and higher order 

More perturbations 

The s t a b i l i t y  intervals  are sti l l  large, 

Since orders 12 and 15 become unstable and i n  their s t a b i l i t y  regions 

they are not much of an improvement over laser orders, it seems safer 

t o  use lower orders. 

for errors 5 100 m and h 2 -03 is PE(CE) 

it is E%c order 6. 

moon, but s tab i l i ty  has forced us t o  lower orders. 

The most e f f i c i en t  and reliable integration mode 

order 8. 2 For larger errors 

These are the  same two algorithms as without the 

Since the s t a b i l i t y  region f o r  Adams PEC is idea l ly  smaller than 

PECE and even PE 117 Table 11, it is  surprising that with t h e  DS 

formulation PEC is best at large stepsizes. 

Comparing Figures 8, 16, 17, we see with J2 only RK fixed step is 
2 as e f f i c i e r t  as Adam PE(CE) 

allowable errors  Adams PEC order 12 is most e f f ic ien t .  

Adams integrator is more e f f i c i en t  at a l l  stepsizes.  

order 15 fo r  errors  < 1 m, but  for larger 

For J2 only, the  

With J2 and lunar perturbations RK variable s tep  is most e f f i c i en t  

f o r  errors  5 100 m, but f o r  larger err-ors Adam PEC is better. 
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Reference solution 52 only: for first 
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Fig. 2 
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Fig. 5. Reference solution 52 only: for first 
orbit; slowly varyiqg components of the DS ele- 
ments; scale: 1 cm = 0.001 units; compare to 
Fig. 2 
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Fig. 8. Efficiency curves Runga-Kutta 
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Fjg. 16. Efficiency envelopes 52 o n l y  
Adams 
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Fig .  17. Efficiency cnvelopes J 2  and 
moon Adams 
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